TECHNICAL REPORT
CMU/SEI-2002-TR-034
ESC-TR-2002-034

Architecture
Reconstruction
Guidelines,
Third Edition

Rick Kazman
Liam O’Brien
Chris Verhoef

November 2003

—a—ee—. Carnegie Mellon

—=— Software Engineering Institute

Pittsburgh, PA 15213-3890

Architecture
Reconstruction
Guidelines,
Third Edition

CMU/SEI-2002-TR-034
ESC-TR-2002-034

Rick Kazman
Liam O’Brien
Chris Verhoef

November 2003

Architecture Tradeoff Analysis Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office

HQ ESC/DIB

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findingsin this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

Thiswork is sponsored by the U.S. Department of Defense. The Software Engineering Instituteis a
federally funded research and devel opment center sponsored by the U.S. Department of Defense.

Copyright 2003 by Carnegie Mellon University.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-1S' BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, ASTOANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKEANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal useis
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

Thiswork was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

Table of Contents

Preface
Abstract
1 Introduction

2 Architecture Reconstruction
2.1 Recommendations for Reconstruction
Projects

3 Information Extraction Phase
3.1 Guidelines

4 Database Construction Phase
4.1 Guiddines

5 View Fusion Phase
5.1 Improving aView
5.2 Disambiguating Function Calls
5.3 Guidelines

6 Architectural View Composition Phase
6.1 Guidelines

7 Other Architecture Reconstruction Ap-
proaches
7.1 Bowman and Associates
7.2 Harrisand Associates
7.3 Guo and Associates

8 Summary

References

Vii

11
12

13
13
15
15

17
21

23
23
23
24

25

27

CMU/SEI-2002-TR-034

CMU/SEI-2002-TR-034

List of Figures

Figure 1:

Figure 2:
Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Conversion of the Extracted View to

RSF 11
Excerpt from a Sample RSF File 11
Static and Dynamic Data Views 13

The Differences Between Static and Dy-
namic Views 14

ltems That Were Added to and Omitted
from the Overall View 15

An Architectural View of a System Pre-
sented in ARMIN 17

Graphical Representation of Elements
and Relations 19

Script for Aggregating Local Variables to
the Function in Which They Are
Defined 19

Result of Applying the Script to Aggregate
Local Variables 20

Query to Identify the Logical_Interaction
Component 20

Example of a Bad Script 22

CMU/SEI-2002-TR-034

CMU/SEI-2002-TR-034

List of Tables

Table 1: A Typical Set of Source Elements and
Relations 7

Table 2: Guiding Principles for Choosing Types
of Extraction 10

Table 3: Subset of the Elements and Relations 18

CMU/SEI-2002-TR-034

Vi

CMU/SEI-2002-TR-034

Preface

Thefirst edition of this report was published in August 2001 under a different document
number: CMU/SEI-2001-TR-026. Because the second edition of this report contained sig-
nificant changes from the first edition, it was assigned a new document number— the current
one—and was published in December 2002.

CMU/SEI-2002-TR-034 vii

viii CMU/SEI-2002-TR-034

Abstract

Architecture reconstruction is the process of obtaining the “as-built” architecture of anim-
plemented system from the existing legacy system. For this process, tools are used to extract
information about the system that will assist in building successive levels of abstraction. Al-
though generating a useful representation is not always possible, a successful reconstruction
results in an architectural representation that aids in reasoning about the system. This recov-
ered representation is most often used as a basis for redocumenting the architecture of an ex-
isting system if the documentation is out of date or nonexistent, and can be used to check the
“as-built” architecture against the “as-designed” architecture. The architectural representation
can also be used as a starting point for reengineering the system to a new desired architecture.
Finally, the representation can be used to help identify components for reuse or to help estab-
lish a software product line.

Thisreport describes the process of architecture reconstruction using the Architecture Recon-
struction and Mining (ARMIN) tool developed by the Carnegie Melon” Software Engineer-
ing Institute and the Robert Bosch Corporation. Guidelines are presented for reconstructing
the architectural representations of existing systems. Most of these guidelines are not specific
to ARMIN, can be used with other tools, and are useful even if the architecture reconstruction
is carried out manually.

Y Carnegie Mdlon isregistered in the U.S. Patent and Trademarks Office.

CMU/SEI-2002-TR-034 ix

CMU/SEI-2002-TR-034

1 Introduction

Architecture reconstruction is the process where the “as-built” architecture of an imple-
mented system is obtained from an existing legacy system. Thisis done through a detailed
system analysis using tool support. The tools extract information about the system and aid in
building successive levels of abstraction. If the reconstruction is successful, the end results
are architectural representations that aid in reasoning about the system. In some cases, how-
ever, generating useful representations is not possible due to the complexity and the lack of
structure of the system involved.

Thisisthe third edition of thistechnical report, which was originally published in August
2001. This new edition describes a new Architecture Reconstruction and Mining (ARMIN)
tool developed by the Carnegie Melon” Software Engineering Institute (SEI®Y) and the
Robert Bosch Corporation, and the slightly revised reconstruction process based on it. This
edition contains new examples and reconstruction guidelines that reflect the use of this new
tool. In addition, the name of the Architecture Reconstruction phase has been changed to the
Architectural View Composition phase to better reflect what it involves and to avoid confu-
sion between the phase and the overall architecture reconstruction process.

Y Carnegie Mdlon isregistered in the U.S. Patent and Trademarks Office.
M SEl isaservice mark of Carnegie Mellon University.

CMU/SEI-2002-TR-034

CMU/SEI-2002-TR-034

2 Architecture Reconstruction

Architecture reconstruction generates an architectural representation that can be used in sev-
eral ways. The main use for this representation is to document the existing architecture of a
system. If no documentation exists or the available documentation is out of date, the recov-
ered architectural representation can be used as abasis for redocumenting the architecture.
Reconstruction can be performed either during the development of an architecture or after the
devel opment has been completed to recover the “as-built” architecture of the system to check
conformance againgt the “as-designed” architecture. The architectural representation can also
be used as a starting point for reengineering the system to a new desired architecture. Finally,
the representation can be used as a means for identifying components for reuse or for estab-
lishing an architecture-based software product line.

Architecture reconstruction has been used in avariety of projects ranging from Magnetic
Resonance Imaging (MRI) scanners to public telephone switches, and from helicopter guid-
ance systems to classified National Aeronautics and Space Administration (NASA) systems.
The SEI has used architecture reconstruction to

» redocument architectures for physics simulations
» understand architectural dependenciesin embedded control software for reengineering

» evaluate the conformance of a satellite ground station system’s implementation to its ref-
erence architecture

e reconstruct three embedded automoative systems and evaluate their potential for conver-
sionto aproduct line

* recover the architecture of several network management systems
* recover the architecture of a satellite-tracking simulation system

* recover the architecture of a Java2 Platform, Enterprise Edition (J2EE) banking applica
tion

Other organizations have used the SEI’s architecture reconstruction methods as well. A tech-

nical note by Liam O’ Brien provides detail s about various projects undertaken at Nokia,

some of them using the SEI's methods [O’ Brien 02].

Architecture reconstruction requires arange of activities and skills. Software engineersfa-
miliar with compiler construction techniques and UNIX environments (especially utilities
such as Grep, SED, Awk, Perl, Python, and Lex/Yacc) have the necessary skills to undertake
architecture reconstruction. However, with the large amount of softwarein most systems, itis
nearly impossible to perform all architecture reconstruction activities manually.

CMU/SEI-2002-TR-034 3

Tool support is needed for these activities, and in general, no singletool or set of toolsis ade-
guate. Software systems are often implemented in many languages and dia ects. For example,
amature MRI scanner easily contains software written in 15 different languages. Because of
this diversity, there is no complete, universally applicable tool set that can operate with the
push of a button. Instead, atool set (workbench) is needed to support architecture reconstruc-
tion activities.

An architecture reconstruction workbench should be open (i.e., easily accommodate new
tools as required) and provide a lightweight integration framework so that new tools added to
the set do not impact the existing tools or data unnecessarily. Such aworkbench existsin
ARMIN, which replaces the Dali Architecture Reconstruction workbench [Kazman 99].
ARMIN still uses the workbench philosophy as it allows for other tools to be used to extract
information from the source code and other system artifacts, and asit enables the loading of
thisinformation so it can be used in the reconstruction process.

Other examples of reconstruction workbenches include Sneed's reengineering workbench
[Sneed 98], the software renovation factories of Verhoef and associates [Brand 97], and the
rearchitecting tool suite by Philips Research [Krikhaar 99].

Using the tool support provided by ARMIN, the software architecture reconstruction process
comprises the following five phases:

1. Information Extraction
In the Information Extraction phase, information is obtained from various sources.
2. Database Construction

The Database Construction phase involves converting the extracted information into the
Rigi Standard Form [MUller 93] (atuple-based data format in the form of “relation <en-
tity1l> <entity2>") and loading it into ARMIN.

3. View Fusion

The View Fusion phase combines information stored in the ARMIN database to generate
aset of low-level views.

4. Architectural View Composition

In the Architectural View Composition phase, the main work of building abstractions
and representations, and generating an architectural representation takes place.

5. Architecture Anaysis

The Architecture Analysis phase involves analyzing the resulting architecture. Architec-
ture analysisis not addressed in this report, but is the topic of ATAM: Method for Archi-
tecture Evaluation [Kazman 00]. Current and compl ete details about architecture analy-
sis can be found in the book Evaluating Software Architectures. Methods and Case
Sudies [Clements 02].

In addition to the person carrying out the actual reconstruction, at least one person is needed
who is familiar with the system being reconstructed (e.g., an architect or software engineer).

4 CMU/SEI-2002-TR-034

The reconstructor extracts the information from the system and, either manually or using
tools, generates views of the architecture. The reconstructor begins by generating a set of hy-
potheses about the system. These hypotheses reflect the set of inverse mappings from the set
of source artifacts to the design (ideally the opposite of the design mappings). The hypotheses
are then tested by generating and applying these inverse mappings to the extracted informa-
tion and validating the results. In order to generate these hypotheses and validate them, the
reconstructor needs the support of people who are familiar with the system, including the sys-
tem architect or engineerswho initially developed or currently maintain the system.

2.1 Recommendations for Reconstruction Projects

The following are general recommendations for reconstruction projects:

» Haveagoa and aset of objectives or questionsin mind before undertaking an architec-
ture reconstruction project. For example, reusing part of the system in anew application
may be a goal. Without these goals and objectives, alot of effort could be spent on ex-
tracting information and generating architectural views that may not be helpful or serve
any purpose.

« Obtain a high-level architectural view of the system before beginning the detailed recon-
struction process. This view guides the

— extraction process by helping to identify the information that needs to be ex-
tracted from the system
— reconstruction process by helping to determine what to look for in the architec-
ture and what views to generate
» Usethe existing documentation to generate only high-level views of the system. In many
cases, the existing documentation for a system may not accurately reflect the system as it
isimplemented, but it should still give an indication of the high-level concepts.

* Involve the people who are familiar with the system early in the project to get a better
understanding of the system being reconstructed. Tools can support the reconstruction ef-
fort and shorten the reconstruction process, but they cannot perform an entire reconstruc-
tion automatically. Architecture reconstruction requires the involvement of people (e.g.,
architects, maintainers, and developers) who are familiar with the system.

» Assign someone to work on the architecture reconstruction project full-time. Architecture
reconstruction involves an extensive, detailed analysis of a system and requires signifi-
cant effort.

The following sections describe the architecture reconstruction process in more detail and
present guidelines that can be used to carry out each phase. Most of these guidelines are not
specific to ARMIN, can be used with other tools, and are useful even if the architecture re-
construction is carried out manually.

CMU/SEI-2002-TR-034 5

CMU/SEI-2002-TR-034

3 Information Extraction Phase

The Information Extraction phase involves analyzing the existing design and implementation
artifacts of a system to construct a model based upon multiple source views. From the source
artifacts (e.g., code, header files, build files) and other artifacts (e.g., execution traces) of the
system, the elements of interest and the rel ations between them can be identified and captured
to produce severa fundamental views of the system. Table 1 shows alist of typical elements
and several relations between elements that might be extracted from a system.

Table 1: A Typical Set of Source Elements and Relations

Source |Relation Target Description

Element Element

File includes File C preprocessor #include of one file by
another

File contains Function |definition of a function in a file

File defines_var Variable |definition of a variable in a file

Function |calls Function |static function call

Function |access read [Variable |Read access on a variable

Function |access_write [Variable |Write access on a variable

Each of the relations between the elements constitutes a different view of the system. The
“calls’ relation between the functions yields the call graph of the system, showing how the
various functionsin the system interact. The “includes’ relation between files shows the de-
pendence view between filesin the system. The “access read” and “access write” relations
between functions and variables show how datais used in the system. Certain functions may
write a set of data and others may read it. Thisrelation information is used to determine how
datais passed between various parts of the system. For example, it can determine whether a
global data storeis used (smilar to a blackboard architectural style) or whether most infor-
mation is passed through function calls.

If the system being analyzed islarge and divided into a particular directory structure on afile
system, capturing that directory structure may be important to the reconstruction process.
Certain components or subsystems may be stored in particular directories, and capturing rela-
tions such as“dir_contains file” and “dir_contains_dir” can help to identify components later
in the reconstruction process.

CMU/SEI-2002-TR-034 7

The set of elements and relations extracted will depend on the type of system being analyzed

and the extraction support tools available. If the system to be reconstructed is object oriented,
classes and methods would be added to the list of elements to be extracted, and relations such
as“Classis subclass Class’ and “Class contains Method” could be extracted and used in the

reconstruction process.

Extracted views can be categorized as either static or dynamic. Static views are those ob-
tained by observing only the artifacts of the system, while dynamic views are those obtained
by observing the system during execution. In many cases, static and dynamic views can be
fused to create a more complete and accurate representation of the system. (Thisfusingis
discussed in Section 5.) If the architecture of the system changes at runtime, for example, a
configuration file isread in by the system, and certain components are loaded at runtime. The
runtime configuration should be captured and used when carrying out the reconstruction.

A source view can be extracted by applying whatever tools are available, appropriate, or nec-
essary for agiven target system. The types of tools that we have used regularly in our extrac-
tionsinclude the following:

e parsers(e.g., Understand for C/C++/Java, Imagix, SNiFF+, C++ Information Abstractor
[CIA], rigiparse)

« abstract syntax tree (AST)-based andyzers (e.g., Gen++, Refine)

e lexical analyzers (e.g., Lightweight Source Model Extractor [LSME])
e profilers (e.g., gprof)

» codeinstrumentation

e adhoc (e.g., Grep, Perl)

Thesetools are applied to the raw source code. Parsers analyze the code and generate internal
representations from it (for the purpose of generating machine code). Typically, it ispossible
to save thisinternal representation to obtain a source view. AST-based analyzers do asimilar
job, but they build an explicit tree representation of the parsed information. Analysistools
can be built that traverse the AST and output selected pieces of architecturally relevant in-
formation in an appropriate format.

Lexical analyzers examine source artifacts purely as strings of lexical elements or tokens.
The user of alexical analyzer can specify a set of lexical patterns to be matched and the ele-
ments to be output. An example of alexical pattern would be one that recognizes the #i n-
cl ude <f i | enane> directive in source files, and the output elements would be the source
filein which the #i ncl ude appeared and the name of the file within the angle brackets

(< >). Finding and extracting instances of thislexical pattern yields the dependencies that
exist between files.

Similarly, we have used a collection of ad hoc tools such as Grep and Perl to carry out lexica
pattern matching and searching within the code in order to output some required information.

8 CMU/SEI-2002-TR-034

All of these tools—code-generating parsers, AST-based analyzers, lexical anayzers, and ad
hoc lexical pattern matchers—are used to output purely static information.

Profilers and code coverage analysis tools can be used to output information about the code
asit is being executed. Using them does not usually require the addition of any new code to
the system. On the other hand, code instrumentation—which has wide applicability in the
field of testing—involves adding code to the system to make it output some specific informa-
tion (e.g., what processes connect with each other at runtime) while the system is executing
[McCabe 02]. All of these tools and techniques generate dynamic views of the system.

Tools to analyze design models, build files, makefiles, and executables can aso be used to
extract further information as required. For instance, build files and makefiles include infor-
mation on module or file dependencies that may not be reflected in the source code.

Much architecture-related information can be extracted statically from source code, compile-
time artifacts, and design artifacts. However, this may not produce enough information for
the architecture recovery process. Some architecturally relevant information may not exist in
the source artifacts, due to late binding. Examples of late binding include

e polymorphism
« function pointers

e runtime parameterization

There are other reasons why the precise topology of a system might not be determined until
runtime. For example, multiprocess and multiprocessor systems, using middleware such as
Common Object Request Broker Architecture (CORBA), Jini, or Component Object Model
(COM), frequently establish their topology dynamically, depending on the availability of sys-
tem resources. The topology of such systems does not reside in their source artifacts and
hence cannot be reverse engineered using static extraction tools.

Therefore, it might be necessary to use tools that can generate dynamic information about the
system (e.g., profiling tools). In some instances, this might not be possible because tools that
can obtain this dynamic information are not available on the system platform. Also, there
might be no way to collect the results from code instrumentation. This problem usually oc-
curs with embedded systems, where there is no means to output the information generated
from code instrumentation.

3.1 Guidelines

The following guidelines apply to the Information Extraction phase:

* Usethe“least effort” extraction. Consider the kind of information that needs to be ex-
tracted from a source corpus and choose the most appropriate tool. Is the information
lexical in nature? Doesit require the comprehension of complex syntactic structures?

CMU/SEI-2002-TR-034 9

Doesit require some semantic analysis? In each of these cases, a different tool could be
applied successfully. In genera, lexical approaches are the cheapest to use, and they
should be considered if reconstruction goals are simple.

Table 2: Guiding Principles for Choosing Types of Extraction

Guiding Principles Type of Extraction Required

Theinformation that isto be extractedis | Lexical anaysis. (Simplelexical analysis
lexical in nature. A set of lexical patterns | utilities such as Perl and Grep may be of
can be written that allows the information | use.)

to be extracted.

The information that needs to be ex- Parsing
tracted cannot be identified lexically.
Elements and relations can be identified
through the use of agrammar for alan-

guage.
More contextual information (semantic AST-based analyzers. (These dlow an

information) must be available to clearly | AST to be built and updated after parsing
identify certain elements and relations. with semantic information.)

» Validate the source information that is extracted. Before starting to fuse or manipulate the
various views that have been obtained, make sure that the correct information has been
captured in the view. Also make sure that the tools being used to analyze the source arti-
facts are carrying out their job correctly. A detailed manual examination and verification
of a subset with the elements and relations against the underlying source code should be
carried out to establish that the correct information is being captured. The precise amount
of information that needs to be verified manualy is up to the individual . Assuming that
thisisaprocess of statistical sampling, the reconstructor can choose a desired confidence
level. In general, the more information that is validated manually, the higher the confi-
dencein theresults.

e Extract dynamic information where required. If alot of runtime or late binding occurs
and the architecture is dynamically configurable, dynamic information about system run-
timeis essential and should be extracted using whatever technique is most appropriate. If
aprofiler isavailable, use it to extract runtime information. If the system runs on aplat-
form where no profiler isavailable, it might be necessary to instrument the code to obtain
the runtime information. When dynamic information cannot be extracted, only static in-
formation will be available for generating architectural representations.

10 CMU/SEI-2002-TR-034

4 Database Construction Phase

The set of extracted views are converted into Rigi Standard Format (RSF) or the Graphica
eXchange Language (GXL) format and |oaded into ARMIN during the Database Construc-
tion phase. This conversion is done using Perl scripts that read the data and convert it into a
filein RSF. The extracted views may be in many different formats depending on the tools
used to extract them. For example, an extraction tool, such as Understand for C/C++/Java or
Imagix-4D, can be used to load the source code of a system into itsinterna representation,
and this information can then be dumped to a set of flat files indexed by file or function.
These files have a uniform structure, and scripts can be developed in Perl to read thesefiles
and output information about elements and relations. Figure 1 depicts this process.

Extracted Rigi

View | Standard >
perl Format load into
scripts ARMIN

Figure 1: Conversion of the Extracted View to RSF

Once the elements and relations file (the extracted view) is converted to RSF or GXL, it can
be loaded into ARMIN. Figure 2 shows an excerpt from a sample RSF file. The entirefile
could be loaded into a new database in ARMIN.

contains String. BaseNodePtr. Map.cc StringBaseNodePtr Map: : cl ear

contains String. BaseNodePtr. Spl ayMap. cc StringBaseNodePtr Spl ayMap: : | ef t nost
calls StringBaseNodePtr Spl ayMap: : OK Stri ngBaseNodePtr Spl ayMap: : | ef t nost
calls StringBaseNodePtr Spl ayMap: : OK Stri ngBaseNodePt r Spl ayMap: : succ

calls StringBaseNodePtr Spl ayMap: : OK Stri ngBaseNodePt r Spl ayMap: : succ

calls StringBaseNodePtr Spl ayMap: : OK Stri ngBaseNodePtr Map: : error

defines_var Application::|nportMpping Application::InmportMpping//pnrivappi ng
defines_var Application::Drawlree Application::Drawlree//prend

i ncludes String. BaseNodePtr. Map. cc String. BaseNodePtr. Map. h

Figure 2: Excerpt from a Sample RSF File

In addition to the tools and techniques used with ARMIN, new ones can be created to convert
the format or formats an extraction tool uses. For example, if atool isrequired to convert the
output from atool not currently supported, it can be built. Then the output from the new tool

CMU/SEI-2002-TR-034 11

can be converted into RSF and loaded into ARMIN. The conversion tool used can become
part of the reconstruction workbench.

In the current version of ARMIN, the Architecture Reconstruction Language (ARL) provides
commands for generating and manipulating the architectural views. (Examples are shownin
Section 4.)

4.1 Guidelines
The following guidelines apply to the Database Construction phase:

« Build database tables from the extracted relations to make processing the data views eas-
ier. For example, create atable that stores the results of a particular query, such as group-
ing the filesinto components or subsystems so the query will not need to be run again. If
the results of that query are required for building further queries, they can be accessed
through the table easily.

* Aswith any database construction, consider carefully the database design before getting
started. What will the primary (and possibly secondary) key be? Will any database joins
be particularly expensive because they span multiple tables?

e UsePerl, Awk, and similar lexical toolsto change the format of data extracted using vari-
oustoolsinto the RSF so that ARMIN can use the data. These tools are less expensivein
terms of development time and resource utilization than writing more complex tools us-
ing other programming languages.

12 CMU/SEI-2002-TR-034

5 View Fusion Phase

In the View Fusion phase, the extracted views are manipulated to create fused views. For ex-
ample, astatic call view might be fused with adynamic call view. As noted earlier, a static
view might not provide dl of the architecturaly relevant information. In the case of late bind-
ing in the system, some function calls might not be identifiable until runtime, so adynamic
call view needs to be generated. These two views need to be reconciled and fused to produce
the complete call graph for the system.

The View Fusion phase reconciles and establishes connections between views that provide
complimentary information. Fusion isillustrated using the examplesin Sections 5.1 and 5.2.
The first shows the improvement of a static view of an object-oriented system with the addi-
tion of dynamic information. The other shows the fusion of several viewsto identify function
calsin asystem.

5.1 Improving a View

Consider the two code views shown in Figure 3, which are from the sets of methods extracted
from a system implemented in C++.

Static Extraction Dynamic Extraction
| nput Val ue: : Get Val ue | nput Val ue: : Get Val ue
| nput Val ue: : Set Val ue | nput Val ue: : Set Val ue
List::[] | nput Val ue: : ~I nput Val ue
List::length | nput Val ue: : | nput Val ue
List::attachr List::[]
Li st::detachr List::length
PrimtiveQp:: Conpute Li st::getnth
Li st::List
Li st:: ~Li st
ArithmeticQp:: Conpute
AttachQOp: : Conput e
StringQOp: : Conmput e

Figure 3: Static and Dynamic Data Views

The differences between these views are shaded in Figure 4.

CMU/SEI-2002-TR-034 13

Static Extraction Dynamic Extraction

| nput Val ue: : Get Val ue | nput Val ue: : Get Val ue
| nput Val ue: : Set Val ue | nput Val ue: : Set Val ue
List::[] | nput Val ue: : ~I nput Val ue
List::length | nput Val ue: : | nput Val ue
Li st::attachr List::[]
Li st:: detachr List::length
PrimtiveOp:: Conpute List::getnth

Li st::List

Li st:: ~Li st

ArithneticOp:: Conput e
At tachQp: : Conput e

Strl nQOp: : Conput e

Figure 4: The Differences Between Static and Dynamic Views

The dynamic view showsthat Li st : : get nt h is called. However, this method isnot in-
cluded in the static analysis view because it was not identified by the static extraction tool.
That shows that the static extraction tool is not perfect, making it necessary to validate the
results of the information extraction. Also, the calls to the constructor and destructor methods
of I nput Val ue and Li st are not included in the static view. These missing methods must
be added to the overall reconciled architectural view.

In addition, the static extraction showsthat the Pri ni t i veQp class has a method called
Conput e. The dynamic extraction results show no such class, but do show classes such as
ArithmeticQOp, AttachOp, and St ri ngOp, each of which has a Conput e method and isin
fact asubclassof Pri mitiveOp. PrimitiveQOpispurely asuperclass; it isnever actualy
called in an executing program. But it isthe call to Pri mi t i veOp that a static extractor sees
when scanning the source code, since the polymorphic call to oneof Pri mi ti veOp’s sub-
classes occurs at runtime. To get an accurate view of the architecture, the static and dynamic
viewsof PrimitiveOp must bereconciled. To do this, afusion is performed over the ex-
tracted static “calls,” dynamic “actually_calls,” and “has_subclass’ relations. In this way, we
can seethat thecalsto Pri miti veOp: : Conput e in the static view and to its various sub-
classesin the dynamic view are redly the same thing.

Thelistsin Figure 5 show the items that would be added to the fused view (in addition to the
methods that the static and dynamic views agreed upon) and those that are removed from the
fused view (even though one of the static or dynamic views included them).

14 CMU/SEI-2002-TR-034

Added to Fused View Not Added

| nput Val ue: : | nput Val ue ArithneticOp:: Conpute
| nput Val ue: : ~I nput Val ue AttachOp: : Conput e

Li st::List Co

Li st::~List StringQOp: : Conput e
List::getnth

Figure 5: Items That Were Added to and Omitted from the Overall View

5.2 Disambiguating Function Calls

In a multiprocess application, name clashes are likely to occur. For example, several of the
processes might have a procedure called nmai n to which there might be calls. It isimportant
to identify and disambiguate these name clashes within the extracted views. Once again, by
fusing information that can be extracted easily, we can remove this potential ambiguity. In
this case, we would need to fuse the static calls view with afile/function containment view
(to determine which functions are defined in which source files) and a build dependency view
(to determine which files are compiled together to produce which executables). The fusion of
these three information sources makes the names of procedures, methods, and other named
elements unique, allowing them to be referred to unambiguously in the architecture recon-
struction process. Without the view fusion, name clashes would persist, and the reconstruc-
tion results would be ambiguous.

5.3 Guidelines

The following guidelines apply to the View Fusion phase:

* Fuse viewswhen no single view provides the information needed for architecture recon-
struction. For example, the calls view needs to show the functional decomposition of the
system. If astatic calls view and adynamic calls view are present, they are fused to pro-
duce asingle calls view that shows the decomposition.

e Fuse viewswhen there is ambiguity within aview and a single view does not provide
clear information.

» Consider using different extraction techniques to extract different view information. For
example, both dynamic and static extraction techniques are avail able. Different instances
of the same kind of technique can be used if asingle instance might provide erroneous or
incompl ete information. For example, use different parsers for the same language if each
provides different information.

CMU/SEI-2002-TR-034 15

16

CMU/SEI-2002-TR-034

6 Architectural View Composition Phase

TheArchitectural View Composition phase consists of two primary activity areas:

» visualization and interaction
e command script definition and interpretation

The visualization and interaction area provides a mechanism that allows the user to visualize,
explore, and manipulate views interactively. The Aggregator component of ARMIN is used to
present views to the user as a hierarchically decomposed graph [Wong 94]. An example pres-
entation of an architectural view is shown in Figure 6. Using the Aggregator, the user can see
viewsin avariety of layout stylesincluding hierarchical, spiral, and orthogonal .

& aggregator =10l x|

File Edit Interpreter Help

mE %5 E

(%) Source | (] FuncTions | [X] cLass: | (%] raphics | () FLEs (K] vanarch | Ertties
;I V 1 local_varishle =
. [V sl member_varishle
Dialogue
[¥ 1 ohject
[V sl il
[s class
[V sl function
[V s aggregstion -
Kl 2
] Lodical | X Relations
ogical_lnteraction
greal [V - gefines =
Il W 1 contains
| [V sl defines_global
|
I W 1 actually_cals
|\ II VW 1 has_instance
I N [V sl has_subclass
N
. A [V m— contaice-aggregstion
FunctmnaI_Core] gareg =
Presentation L3 Ao e
1 | »
-
_‘I | _’l_l Apply | Al | Mane |

& W Lakels [~ Path ¥ Edges [arrows [vertical T4 108% orid - |default - |

coprograrm filesiarminiarmin = <-remove {Ims; n's=242 e's=321} ;I

o prograr filesiarminiarmin =removelsystem types function);

o prograrm filesiarminiarmin = -=remove {graph; n's=242 e's=321}

o prograrm filesiarminiarmin = =-remove {16ms; n's=77 e's=102}

ciprograr filesharminiarmin =removel system types file),

o prograrm filesiarminiarmin = -=remove {graph: n's=77 e's=102}

ciprogram filestarminiarmin = =-remove {Oms; n's=7 g's=19}

o prograrm filesiarminiarmin = <-script {41141ms} j
-

o prograrm filesiarminiarmin =
b g S/

Figure 6: An Architectural View of a System Presented in ARMIN

CMU/SEI-2002-TR-034 17

The command script definition and interpretation activity area provides facilities for abstract-
ing the low-level information to generate architectural views. The command scripting facili-
tiesalow auser to write scripts to construct more abstract views from more detailed ones by
identifying aggregations of elements. ARMIN scripts are written using the ARL and any edi-
tor, and are then loaded into ARMIN.

Architecture reconstruction is not a straightforward process. Architectural constructs are not
represented explicitly in the source code, making reconstruction especially difficult. Addi-
tionally, architectural constructs are reaized by many diverse mechanismsin an implementa
tion. Usually these are a collection of functions, classes, files, objects, and so forth. When a
systemisinitially developed, its high-level design/architectural elements are mapped to im-
plementation elements. Therefore, when architectural €lements are “reconstructed,” thein-
verse of the mappings needs to be applied.

Architecture reconstruction is an interpretive, interactive, and iterative process, not an auto-
matic process. It requires the skills and attention of both the reverse engineering expert and
the architect (or someone who has substantial knowledge of the architecture). Based upon the
architectural patterns that the architecture expert expectsto find in the system, the reverse
engineer can build various command scripts using ARMIN. These scripts result in new ag-
gregations that show various abstractions or clusterings of the lower level elements (which
may be source artifacts or abstractions). By interpreting these views and actively analyzing
them, it is possible to refine the scripts and aggregations to produce several hypothesized ar-
chitectural views of the system. These views can be interpreted, further refined, or rejected.
There are no universal completion criteriafor this process; it is complete when the architec-
tural representation is sufficient to support the analysis needs of the users, so the goals of the
reconstruction can be achieved.

Consider the subset of elements and relations shown in Table 3.

Table 3: Subset of the Elements and Relations

Source Relation Target
Element Element
f defines_var a
f defines_var b
g calls f
f calls h

In this example variables“a” and “b” are defined in function “f”; that is, they arelocal to “f”.
We can graphically represent thisinformation as shown in Figure 7.

18 CMU/SEI-2002-TR-034

calls

calls

»

defines_var defines_var

a b

Figure 7: Graphical Representation of Elements and Relations

Thelocal variables are not important during an architecture reconstruction because they pro-
vide little insight into the architecture of the system. Therefore, instances of local variables
can be aggregated to the functionsin which they occur. A script such as the one shown in
Figure 8 can be written for this purpose.

#col | apse the function’s | ocal variabl es

$c = desc(systemtypes.function);

$c. merge(/ext="+");

col | apse($c, / graph="FUNCTI ON+", / t ype=syst em t ypes. functi on);
show() ;

Figure 8: Script for Aggregating Local Variables to the Function in Which They Are
Defined

Thefirst lineisacomment as it begins with a pound sign (#). The second line gets the de-
scendants of afunction (using the desc command)—in this case, local variables. Thedesc
command returns a three-dimensional array of the functions and their local variables. The
third line merges the function name with the local variables for each function and adds a plus
sign (+) to the end of the name. Using the col | apse command, the fourth line removes
from the graph all the local variable names and leaves only the function name with the +.
This new graph is named FUNCTION+. The last line displays the graph in the Aggregator
window using the show command.

Theresult of applying the script is represented graphically in Figure 9. Most command
scriptsin ARMIN are developed in asimilar manner.

CMU/SEI-2002-TR-034 19

g
f+
calls ¢ composite
— composite
f —» h
>
calls
defines_var defines_var
a b

Figure 9: Result of Applying the Script to Aggregate Local Variables

The primary mechanism for manipulating the views is the application of command scripts
(i.e., inverse mappings). Examples include scripts that

* identify types
e aggregate loca variables with functions
e aggregate members with classes

e compose architecture-level elements

An example of a script that identifies an architectural-level component, Logi -

cal I nteraction,isshowninFigure 10. This script saysthat if the class nameis
Present ati on, Bspl i ne, or Col or, orif theclassisasubclass of Pr esent ati on, it
belongsintheLogi cal _| nt eracti on component.

#create Logical Interaction conponent
#al |l classes that are subcl asses of Presentation
$log = {{{"Logical _Interaction"},
{"Presentation++","BSpline++", " Point++", " Col or ++", "i nt er pol at e+",
desc(system types. has_subcl ass, "Presentati on++",/di n=1,/grade=1) }

s
$conps. append($l og) ;

Figure 10: Query to ldentify the Logical_Interaction Component

Scripts are written in this way to abstract information from the lower level information to
generate architecture-level views. The reconstructor builds these scripts to test hypotheses
about the system. If a particular script does not yield useful results, it can be discarded. The
reconstructor iterates through this process until useful architectural views have been obtained.

20 CMU/SEI-2002-TR-034

6.1 Guidelines
These guidelines apply to the Architectural View Composition phase:

» Beprepared to work with the architect closely and to iterate several times on the architec-
tural abstractionsthat are created. Thisis particularly important in cases where the sys-
tem has no explicit, documented architecture. In such cases, architectural abstractions can
be created as hypotheses, and these hypotheses can be tested by creating the views and
showing them to the architect and other stakeholders. Based on the fal se negatives and
false positives found, the architect may decide to create new abstractions, resulting in
new ARMIN scripts to apply (or perhaps even new extractions that need to be done).

* When the reconstructor is not familiar with the technology the system uses, he or she
needs to work with someone who is.

» When developing scripts, try to build ones that are succinct and do not list every source
element. The script shown in Figure 10 is an example of a good one; an example of a bad
script isshown in Figure 11. In the bad one, the source elements that comprise the com-
ponent are smply listed, which makes the script difficult to use and understand especially
if alot of element names are listed. It also makes the script difficult to reuse as the names
of the elementsin this component would not match those in any other components.

» Scripts can be based on naming conventionsif the naming conventions are used consis-
tently throughout the system. For example, a naming convention could specify that all
functions, data, and files that belong to the Interface component be given names that be-
gin with the letter i and an underscore (i). Writing a script that abstracts elements with
such names s straightforward.

e Scripts can be based on the directory structure where files and functions are located.
Component aggregations can be based on these directories.

« Architecture reconstruction is the effort of redetermining architectural decisions, given
only the results of these decisionsin the actual artifacts (i.e., the code that implements the
decisions). Asthe reconstruction process proceeds, information must be added to re-
introduce the architectural decisions. This process introduces bias from the
reconstructor, thus reinforcing the need for involvement by an architecture expert.

» Recongtructing an entire system might be unnecessary if the goa of the reconstructionis
to determine whether the system uses certain architectural styles or tactics [Bachmann
03]. According to Stoermer and associates, architecture reconstruction is linked closely to
an analysis framework for various system quality attributes, and those attributes are
achieved through the use of architectural styles or tactics [Stoermer 03].

CMU/SEI-2002-TR-034 21

#create Graphics conmponent

#all of the following Iist of classes

$gf x = {{{" G aphics"},

{" "Bl ackPi xel +", " Def aul t Col or map+", " Def aul t Dept hOf Scr een+"

"Def aul t Scr een+", " GLwivakeCurrent +", "Whi t ePi xel +"
"auxSol i dSphere+", "auxW reSphere+", "auxSol i dTetrahedr on+"
"aux WreTetrahedron+", "tkDrawStr+","fclose+","fflush+",
"fopen+","fprintf+", "printf+","return+","strcpy+", "strlen+"+"}

s
$conps. append($gf x) ;

Figure 11: Example of a Bad Script

22 CMU/SEI-2002-TR-034

7 Other Architecture Reconstruction
Approaches

This section explores other approaches for architecture analysis.

7.1 Bowman and Associates

Bowman and associates outline a similar method to that of Dali for extracting architectural
documentation from the code of an implemented system [Bowman 99]. In one example, they
reconstructed the architecture of the Linux system. They analyzed source code using the cfx
program (c-code fact extractor) to obtain symbol information (elementsin Dali) from the
code and generated a set of relations between the symbols. Then, they manually created a
tree-structured decomposition of the Linux system into subsystems and assigned the source
filesto these subsystems. Next, they used the grok fact manipulator tool to determine rela-
tions between the identified subsystems, and the | sedit visualization tool to visualize the ex-
tracted system structure. The resulting structure was refined by moving source files between
subsystems.

Unlike the approach used in Dali, this one is primarily manual. The reconstructor carries out
subsystem and component identification by manually selecting source file elements to belong
to these views. Dali is more automated, so queries can be written to carry out these tasks. The
first step in Bowman and associates’ approach was to develop a conceptual architecture. This
step is not part of the phases of using Dali outlined earlier, but devel oping a conceptual archi-
tectural view with the help of the developers, maintainers, or the architectureis certainly part
of the overall approach when Dali is used. This conceptual architectura view helpsto guide
the reconstruction effort in the generation and testing of hypotheses. The visualization using
Rigi allows for more interaction by the reconstructor. By selecting a particular component in
Dali, the lower level elements that comprise those components become visible, and by select-
ing alink between two components, the relations represented become visible. Bowman's ap-
proach does not appear to provide thislevel of interaction.

7.2 Harris and Associates

Harris and associates outline a framework for architecture reconstruction using a combined
bottom-up and top-down approach [Harris 95]. The framework consists of three components:
1) the architectural representation, 2) the source code recognition engine and supporting li-
brary of recognition queries, and 3) a“bird’'seye” program overview capability. The bottom-
up analysis uses the bird’s eye view to display the system'’s file structure and components and

CMU/SEI-2002-TR-034 23

to reorganize information into more meaningful clusters. The top-down analysis uses particu-
lar architectural stylesto define components that should be found in the software. Recogni-
tion queries are then run to determine if the expected components exist.

Harris's approach is based on a set of implementation language independent queries that are
applied to an AST. Parsing the source code of a system generates the AST, which is specific
to a particular programming language. The application mechanism of the queriesis also spe-
cific for each programming language (i.e., AST specific). Thusif a new language needs to be
handled, anew AST hasto be developed, a parser has to be written, and a new application
mechanism has to be derived. Thisis not the casein Dali. Using Dali, views can be extracted
from different languages using the appropriate tools, and the devel opment of queriesto gen-
erate architectural representations does not depend on any particular programming language.
In fact, Dali can be used on code that cannot be parsed. Thus Dali is more easily applicable
across awider set of programming languages. Harris's approach does provide some metrics
information about the amount of code covered by particular architectural stylesin the system,
which may be useful for maintenance and reengineering purposes. For example, if a particu-
lar architectural stylein the system has to be changed or reimplemented, it is possible to get
an idea of how big the problem will be. Thistype of information is not provided in the Ddi
workbench.

7.3 Guo and Associates

Guo and associates outline the semi-automatic architecture recovery method (ARM) that as-
sistsin architecture recovery for systems that are designed and devel oped using patterns [Guo
99]. It consists of four major phases. 1) devel oping a concrete pattern recognition plan, 2)
extracting a source model, 3) detecting and evaluating pattern instances, and 4) reconstruct-
ing and analyzing the architecture. Case studies have been presented showing the use of the
ARM method to reconstruct systems and check the conformance of these systems against
their documented architectures. Pattern rules are transformed into pattern queries, which can
be applied automatically to detect pattern instances from the source model. Refinement of the
pattern queries can help to improve the precision of pattern recognition. Visualizations of the
recovered patterns are presented to the tool user and aligned with the designed pattern in-
stances.

Guo and associates used the Dali workbench to perform the architecture recovery work. An
abstract pattern rule was then mapped into a concrete pattern rule and converted into an SQL
query. This query was then applied to the database to extract instances of the pattern. The Guo
method isintended for use on systemsthat have been developed using design patterns, limiting its
applicability. It can only be used with systems that were developed using design patterns or in cases
where the design pattern implementations have not eroded over time.

24 CMU/SEI-2002-TR-034

8 Summary

Four major phases of architecture reconstruction were outlined in this report:

Information Extraction
Database Construction

View Fusion

Architectural View Composition

The activities that are carried out to compl ete these steps were described, and exampl es of
tool support were provided for each activity. Guidelines for carrying out these activitiesto
obtain a satisfactory architecture representation from an existing system were provided. Most
of these guidelines are applicable even if other tools are used to support the reconstruction
effort and even when areconstruction is carried out manually.

In our work at the SEI, we have used ARMIN and Dali to support the reconstruction efforts
on severa systemsin awide variety of domains. One reason why ARMIN and Dali have
been very useful isthat both are language independent. They can be used to analyze informa-
tion from many different languages, systems, and domains. ARMIN replaces the Dali work-
bench and will continue to be applied on new projects.

CMU/SEI-2002-TR-034 25

26

CMU/SEI-2002-TR-034

References

[Bachmann 03]

[Bowman 99]

[Brand 97]

[Clements 02]

[Guo 99]

[Harris 95]

Bachmann, F.; Bass, L.; & Klein, M. Deriving Architectural Tactics: A
Sep Towards Methodical Architectural Design (CMU/SEI-2003-TR-
004, ADA413644). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mdlon University, 2003.

<http://www.sel .cmu.edu/publications/documents/03.reports
/03tr004.html>.

Bowman, T.; Holt, R. C.; & Brewster, N. V. “Linux as a Case Study: Its
Extracted Software Architecture.” 555-563. Proceedings of the 21% In-
ternational Conference on Software Engineering. LosAngeles, CA,
May 16-22, 1999. New York, NY: ACM Press, 1999.

van den Brand, M. G J;; Sellink, M.; & Verhoef, C. “Generation of
Components for Software Renovation Factories From Context-Free
Grammars,” 144-153. Proceedings of the Fourth Working Conference
on Rever se Engineering. Amsterdam, The Netherlands, October 6-8,
1997. New York, NY: ACM Press, 1997.

Clements, P; Kazman, R.; & Klein, M. Evaluating Software Architec-
tures. Methods and Case Sudies. Boston, MA: Addison-Wesley, 2002.

Guo, G; Atlee, J.; & Kazman, R. “A Software Architecture Reconstruc-
tion Method,” 225-243. Proceedings of the First Working | FIP Confer-
ence on Software Architecture (WICSAL). San Antonio, TX, February
22-24, 1999. Norwell, Massachusetts: Kluwer Academic Publishers,
1999.

Harris, D. R.; Reubenstein, H. B.; & Yeh, A. S. “Reverse Engineering to
the Architectural Level.” 186-195. Proceedings of the 17" International
Conference on Software Engineering (ICSE). Seattle, WA, April 23-30,
1995. New York, NY: ACM Press, 1995.

CMU/SEI-2002-TR-034

27

[Kazman 99]

[Kazman 00]

[Krikhaar 99]

[McCabe 02]

[Muller 93]

[O’Brien 02]

[Sneed 98]

[Stoermer 03]

Kazman, R. & Carriere, S. J. “Playing Detective: Reconstructing Soft-
ware Architecture from Available Evidence.” Journal of Automated
Software Engineering 6, 2 (April 1999): 107-138.

Kazman, R.; Klein, M.; & Clements, P. ATAM: Method for Architecture
Evaluation (CMU/SEI-2000-TR-004, ADA382629). Pittsburgh, PA.:
Software Engineering Institute, Carnegie Mellon University, 2000.
<http://www.sel .cmu.edu/publications/documents/00.reports
/00tr004.html >,

Krikhaar, R. Software Architecture Reconstruction, PhD Thesis. Univer-
sity of Amsterdam, Amsterdam, The Netherlands, 1999.

McCabe & Associates, Inc. McCabe Q2 Suite.
<http://www.mccabe.com> (2002).

Mdller, H. A.; Mehmet, O. A.; Tilley, S. R,; & Uhl, J. S. “A Reverse
Engineering Approach to System Identification.” Journal of Software
Maintenance: Research and Practice 5, 4 (December 1993): 181-204.

O'Brien, L. Experiencesin Architecture Reconstruction at Nokia,
(CMU/SEI-2002-TN-004). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University, 2002.

<http://www.sel .cmu.edu/publications/documents/02.reports
/02tn004.html>.

Sneed, H. M. “Architecture and Functions of a Commercial Software
Reengineering Workbench.” 2-10. Proceedings of the Second Euromi-
cro Conference on Maintenance and Reengineering.

Florence, Italy, March 8-11, 1998. LosAlamitos, CA: |EEE Computer
Society Press, 1998.

Stoermer, C.; O'Brien, L.; & Verhoef, C. “Moving Towards Quality At-
tribute Driven Software Architecture Reconstruction,” 46-56. Proceed-
ings of the Working Conference on Reverse Engineering. Victoria, Brit-
ish Colombia, Canada, November 13-16, 2003. Los Alamitos, CA:
|EEE Computer Society Press, 2003.

[Wong 94] Wong, K; Tilley, S.; Miller, H.; & Storey, M. “Programmable Reverse
Engineering.” International Journal of Software Engineering and
Knowledge Engineering 4, 4 (December 1994): 501-520.

28 CMU/SEI-2002-TR-034

REPORT DOCUMENTATION PAGE o P 183

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,

Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management

and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(LEAVE BLANK) November 2003 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Architecture Reconstruction Guidelines, Third Edition F19628-00-C-0003

6. author(s)
Rick Kazman, Liam O’Brien, Chris Verhoef

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute RCEI\F;IOLFJ{/TSTEAIABZE(§02 TR-034
Carnegie Mellon University
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
HQ ESCIXPK S
5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT 12.B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
Architecture reconstruction is the process of obtaining the “as-built” architecture of an im-
plemented system from the existing legacy system. For this process, tools are used to ex-
tract information about the system that will assist in building successive levels of abstrac-
tion. Although generating a useful representation is not always possible, a successful
reconstruction results in an architectural representation that aids in reasoning about the
system. This recovered representation is most often used as a basis for redocumenting
the architecture of an existing system if the documentation is out of date or nonexistent,
and can be used to check the “as-built” architecture against the “as-designed” architec-
ture. The architectural representation can also be used as a starting point for reengineer-
ing the system to a new desired architecture. Finally, the representation can be used to
help identify components for reuse or to help establish a software product line.
This report describes the process of architecture reconstruction using the Architecture
Reconstruction and Mining (ARMIN) tool developed by the Carnegie Mellon™ Software
Engineering Institute and the Robert Bosch Corporation. Guidelines are presented for re-
constructing the architectural representations of existing systems. Most of these guide-
lines are not specific to ARMIN, can be used with other tools, and are useful even if the
architecture reconstruction is carried out manually.

14. SUBJECT TERMS NUMBER OF PAGES
architecture representation, architecture reconstruc- 42
tion, architecture reengineering

16. PRICE CODE

7. SECURITY CLASSIFICATION 18. SECURITY 19. SECURITY 20. LIMITATION OF ABSTRACT

OF REPORT CLASSIFICATION OF CLASSIFICATION
THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED uL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Architecture Reconstruction Guidelines, Third Edition
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Abstract
	1 Introduction
	2 Architecture Reconstruction
	3 Information Extraction Phase
	4 Database Construction Phase
	5 View Fusion Phase
	6 Architectural View Composition Phase
	7 Other Architecture Reconstruction Approaches
	8 Summary
	References

